從化學(xué)角度看,ITO是一種復(fù)合氧化物,其性能很大程度上取決于氧化銦和氧化錫的比例。氧化銦提供高透明度,而氧化錫的摻雜則增強(qiáng)了材料的導(dǎo)電性。通過控制這兩者的配比,ITO能夠在保持光學(xué)透明的同時(shí),具備接近金屬的導(dǎo)電能力。這種“透明卻導(dǎo)電”的特性,使得ITO成為制造透明導(dǎo)電膜的理想選擇。
制造ITO靶材是一項(xiàng)技術(shù)密集型的工作,涉及從原料配比到成型加工的多個(gè)環(huán)節(jié)。高質(zhì)量的ITO靶材需要具備高密度、均勻性和穩(wěn)定性,而這些要求背后隱藏著復(fù)雜的工藝和諸多挑戰(zhàn)。
制備完成后,ITO靶材在實(shí)際應(yīng)用中還會(huì)遇到一些問題:
濺射不均勻:如果靶材內(nèi)部存在微小缺陷或成分偏差,濺射過程中可能出現(xiàn)局部過熱,導(dǎo)致薄膜厚度不一致。
靶材破裂:在高功率濺射時(shí),靶材承受的熱應(yīng)力可能超出其極限,造成破裂,進(jìn)而影響生產(chǎn)線的連續(xù)性。
資源限制:ITO靶材依賴銦這種稀有金屬,而銦的全球儲(chǔ)量有限,價(jià)格波動(dòng)較大。這不僅推高了成本,也促使業(yè)界尋找替代方案。
隨著高科技產(chǎn)業(yè)的迅猛發(fā)展,稀有金屬銦的需求日益增長。銦靶材與ITO靶材作為關(guān)鍵材料,在電子、光電及半導(dǎo)體等領(lǐng)域發(fā)揮著重要作用。本文旨在探討銦靶材與ITO靶材的區(qū)別,以及它們在回收技術(shù)、環(huán)保與經(jīng)濟(jì)效益方面的差異。

