氣體保護焊:汽車制造的 “結構主力”
氣體保護焊在汽車制造中主要承擔承載式結構件的焊接,核心是保證車身強度和連接穩(wěn)定性,應用場景集中在以下幾類:
車身底盤:車架縱梁、橫梁、懸掛支座等厚壁鋼件的焊接,常用二氧化碳氣體保護焊(CO?焊),兼顧強度和成本。
車身骨架:車門框架、立柱(A 柱 / B 柱 / C 柱)、車頂橫梁等關鍵支撐部件的拼接,多采用混合氣體保護焊(如氬氣 + 二氧化碳),減少焊縫缺陷。
動力總成周邊:發(fā)動機支架、變速箱殼體與車身的連接部位,以及排氣管中段的焊接,適應中等厚度金屬的連接需求。
工藝連續(xù)性不同氣體保護焊受電弧穩(wěn)定性限制,速度過快易出現(xiàn) “未熔合”“咬邊” 等缺陷;激光焊搭配自動化送絲和視覺定位時,工藝穩(wěn)定性更高,可長期維持高速焊接,不易出現(xiàn)質量波動。
并非所有情況都是激光焊更快,以下兩種場景中,兩者速度差距會縮?。?
厚板單道焊(≥25mm):激光焊需增大功率或降低速度以保證焊透,此時速度可能僅為氣體保護焊的 2-3 倍;若氣體保護焊采用 “多層多道焊”,整體效率反而會因工序增加而低于激光焊。
高反射材料焊接(如鋁合金):激光焊會有部分能量被鋁合金反射,需降低速度保證熔深,此時速度差距可能縮小到 3-4 倍,而氣體保護焊(MIG 焊)對鋁合金的適應性更穩(wěn)定,速度劣勢減弱。
關鍵機制:“匙孔效應” 的熔合
激光焊能形成獨特的 “匙孔效應”,這是它速度快的另一大關鍵。
高能量激光束照射金屬表面時,金屬瞬間汽化,形成一個微小的 “孔”(匙孔)。
激光束可以直接穿過這個孔,深入工件內部,同時熔化孔壁的金屬。
隨著焊槍移動,熔化的金屬在后方快速凝固,形成焊縫。整個過程相當于 “激光直接在金屬上‘鉆’著走”,無需像氣體保護焊那樣靠電弧逐步鋪展熔池。
氣體保護焊沒有 “匙孔”,只能靠電弧在金屬表面形成一個寬而淺的熔池,必須慢速移動才能讓熔池充分融合,否則容易出現(xiàn)未焊透或焊縫不連續(xù)的問題。
