氣體保護(hù)焊適用場景
重工業(yè)領(lǐng)域:如鋼結(jié)構(gòu)、壓力容器、船舶制造的中厚板焊接。
常規(guī)制造業(yè):汽車底盤、工程機(jī)械的框架焊接,對精度要求不的場景。
現(xiàn)場施工:設(shè)備相對便攜,可用于戶外或大型構(gòu)件的現(xiàn)場拼接。
熱輸入與熔池大小不同氣體保護(hù)焊的熱輸入高、熔池大(通常寬 5-15mm),需要較慢速度保證熔池凝固成型;激光焊熱輸入低、熔池窄(通常寬 1-3mm),熔池冷卻速度快,可在高速移動(dòng)中完成焊接,且不易出現(xiàn)焊穿或變形。
核心原因:熱源能量密度的 “量級差”
這是最根本的區(qū)別,直接決定了金屬熔化的速度。
激光焊的能量密度,達(dá)到 10?-10? W/cm2。這么高的能量能瞬間讓金屬局部溫度飆升到熔點(diǎn)以上,甚至直接汽化。
氣體保護(hù)焊的能量密度只有 103-10? W/cm2,僅為激光焊的萬分之一到千分之一。它需要靠電弧持續(xù)加熱,才能讓金屬慢慢熔化。
簡單說:激光焊是 “用高溫噴槍快速燒穿”,氣體保護(hù)焊是 “用溫火慢慢烤化”,加熱效率完全不在一個(gè)量級。
熔池形態(tài)影響焊縫致密性激光焊會(huì)形成 “匙孔效應(yīng)”(金屬汽化形成小孔),熔池內(nèi)的氣體易排出,焊縫致密性高,不易出現(xiàn)氣孔;氣體保護(hù)焊的熔池是 “開放式” 的,若保護(hù)氣體覆蓋不充分(如風(fēng)吹、氣體不純),空氣中的氧氣、氮?dú)庖谆烊肴鄢?,產(chǎn)生氣孔或氧化夾雜。
